Codes from the incidence matrices of a zero-divisor graphs

نویسندگان

چکیده

In this paper, we examine the linear codes with respect to Hamming metric from incidence matrices of zero-divisor graphs vertex set consisting all non-zero zero- divisors ring ℤn and two distinct vertices being adjacent if their product is zero over ℤn. The main parameters are obtained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of zero-divisor graphs

In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores

متن کامل

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

Codes from incidence matrices of graphs

We examine the p-ary codes, for any prime p, from the row span over Fp of |V | × |E| incidence matrices of connected graphs Γ = (V,E), showing that certain properties of the codes can be directly derived from the parameters and properties of the graphs. Using the edge-connectivity of Γ (defined as the minimum number of edges whose removal renders Γ disconnected) we show that, subject to various...

متن کامل

$C_4$-free zero-divisor graphs

‎In this paper we give a characterization for all commutative‎ ‎rings with $1$ whose zero-divisor graphs are $C_4$-free.‎

متن کامل

Codes from incidence matrices and line graphs of Paley graphs

We examine the p-ary codes from incidence matrices of Paley graphs P (q) where q ≡ 1 (mod 4) is a prime power, and show that the codes are [ q(q−1) 4 , q − 1, q−1 2 ]2 or [ q(q−1) 4 , q, q−1 2 ]p for p odd. By finding PD-sets we show that for q > 9 the p-ary codes, for any p, can be used for permutation decoding for full error-correction. The binary code from the line graph of P (q) is shown to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Discrete Mathematical Sciences and Cryptography

سال: 2022

ISSN: ['2169-0065', '0972-0529']

DOI: https://doi.org/10.1080/09720529.2021.1939955